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Abstract. Atomic structures and non-collinear magnetic moments are calculated by the first principle
molecular dynamics for Fe5 and Fe6 linear chains with several fixed and free chain-lengths. The dimerization
appears in the optimized atomic structures of all the chains. For the Fe5, the magnetic arrangement is
parallel for a large chain-length and changes to non-collinear with decreasing the chain-length. For the
Fe6, the magnetic arrangement is antiparallel in a unit of dimer for a small chain-length and changes to
non-collinear with increasing the chain-length. These magnetic behaviors are simulated by a simple J1-J2

Heisenberg model.

PACS. 31.15.Ar Ab initio calculations – 36.40.Cg Electronic and magnetic properties of clusters –
73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
75.75.+a Magnetic properties of nanostructures

1 Introduction

Many types of atomic scale materials have been produced
in the recent progress of nano-technology. These materi-
als such as the nano-wires [1] have been expected not only
to be industrially applied, but also to have new quan-
tized features [2,3]. The magnetic property in nano-wire
of transition metal is especially interesting because of the
low dimensional and anomalous geometrical structures,
which lead to giant and frustrated magnetic moments.
Morigaki et al. have revealed, in their calculation with
the Hubbard model, that the magnetic property changes
from paramagnetic to ferromagnetic and vice versa as the
wire is stretched [4]. It also has been revealed, by the non-
collinear local spin-density calculation, that the magnetic
moment of the Fe3 linear cluster has a non-collinear mag-
netic property, where the magnetic moments of the both
end atoms tilt almost perpendicularly to that of the center
atom [5,6]. This result suggests that effective antiferro-
magnetic interaction is very large between the end atoms
(between the second neighbors). It is expected that long-
range non-collinear magnetic arrangements appear also in
longer chains.

In the present paper, we calculate the atomic struc-
tures and magnetic moments of Fe5 and Fe6 linear chains
by the non-collinear first principle molecular dynamics,
and discuss the non-collinear magnetic properties as the
chain-length is changed. It is shown that the optimized
structures have a dimerization for both the chains. It is
also shown that the magnetic moments of Fe5 align paral-
lel for the large chain-length and gradually tilt from center
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to the ends with decreasing the chain-length, and that the
magnetic moments of Fe6 align antiparallel in a unit of
dimer for small chain-length and tilt with increasing the
chain-length.

As a preliminary work, we calculated the non-collinear
magnetic moments of Fe5 and Fe7 linear chains with fixed
equal interatomic distances by the discrete variational lo-
cal spin-density functional method [7]. In that work, we
have obtained some non-collinear magnetic arrangements.
However, the calculation has not included the effect of
dimerization, which may play an important role in the
magnetic property. It is mentioned that Chen et al. found
a tightly bound Cr dimer to play a key role in determining
the structures of small Cr clusters [8].

2 Calculations

All the calculations in the present work are performed
by the first principle molecular dynamics [5,9], in which
the generalized spin-density functional method is em-
ployed [10]. In this method, the eigenstates are de-
scribed by two component complex wave functions, Ψi =
{ψ1i, ψ2i}, which generate the 2 × 2 non-collinear density
matrix ρ(r). The elements of ρ are defined as

ραβ(r) =
∑

i

fiψαi(r)ψβi(r). (1)

Here, α and β are spin indices and fi is the occupation
number of the ith eigenstate. ρ is decomposed by the Pauli
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Fig. 1. Interatomic distance and magnetic moment of Fe5 chain.

matrices, σq,(q = x, y, z);

ρ(r) =
1
2
n(r)I +

1
2

∑

q

mq(r)σq , (2)

where I is the unit matrix, n and m = (mx,my,mz)
are the charge density and spin density vector, respec-
tively. ρ(r) is oriented to the local spin axis determined
from m(r).

The electronic wave functions {Ψi} and the atomic po-
sitions {RI} are simultaneously optimized by solving the
equations of motion for Ψi and RI with the ultrasoft pseu-
dopotential scheme [11]. In this scheme, the density matrix
has a hard augmented component, so that equation (1)
is modified with the augmentation electron density. The
wave functions and the density matrix are expanded into
a set of plane waves with a cutoff energy of 24 and 250 Ry,
respectively. The usual local exchange-correlation poten-
tial [12] is applied to the densities, n(r) and m(r). Details
of the calculation are described in references [13,14].

We employ two types of chains. First, the chain length,
L, is fixed at L = 7.92−9.94 Å for Fe5 and L =
9.94−12.41 Å for Fe6, as shown in Figures 1a–1e and 2a–
2e. These lengths correspond to those with 80−100%
interatomic distance of the Fe bulk crystal (2.48 Å). Sec-
ond, the boundary atoms are freely moved from the initial
length of L = 8.92 Å for Fe5 and L = 11.16 Å for Fe6.
The atomic positions are initiated from an equal inter-
atomic distance for each chain. These chains are set on
a diagonal of a simple cubic unit cell with a lattice con-
stant of 20 a.u. No symmetrical restriction is applied in
the calculation. However, the geometrical structure keeps
linear during the optimization since the forces between the
atoms occur only along the linear chain.

3 Results

3.1 Fe5 chain

Figure 1 shows the optimized interatomic distances and
the magnetic moments of the Fe5 chain: Figures 1a–1e for

the fixed chain-lengths, L = 7.92−9.94 Å, and Figure 1f
for the optimized chain-length. In the figure, the inter-
atomic distances (Å) are indicated on the right-hand side
of each chain, the absolute magnetic moments (µB) and
their angles (degree) relative to that of the center atom
are indicated on the left-hand side.

The calculation shows that the optimized interatomic
distance between the end and the next atoms, d2, is
shorter than that between the central and the neighbor
atoms, d1, for all the chains. That is, a dimerization, which
corresponds to the Peierls distortion, occurs at both the
ends. The dimer length, d2, changes from 1.93 to 2.33 Å
with increasing the chain-length, and the ratio, d2/d1,
changes from 0.95 to 0.88.

The magnetic moment at each atom aligns parallel
each other for L = 9.94 Å in Figure 1e, and the direc-
tion of magnetic moment on each side rotates oppositely
with decreasing the chain-length. The arrangement of the
magnetic moment becomes non-collinear (but coplanar);
the angle at the end atom (at the next) becomes 160◦
(124◦) for L = 7.72 Å in Figure 1a. It is expected that
the magnetic arrangement will become antiparallel when
the chain-length becomes shorter. This change in mag-
netic arrangement can be understood by the competition
between the ferromagnetic and antiferromagnetic interac-
tions: ferromagnetic interaction between the first neigh-
bors, and the antiferromagnetic interaction between the
second neighbors. This competition will be discussed by a
J1-J2 Heisenberg model in the following section.

The optimized chain-length is 8.76 Å (d1 = 2.30,
d2 = 2.08) as shown in Figure 1f. The magnetic moments
of both the end atoms are almost antiparallel each other
and perpendicular to that of the central atom. This ar-
rangement is similar to that of the Fe3 linear chain, where
the angle of the magnetic moments between the central
and the end atoms is 84◦ [5].

3.2 Fe6 chain

Figure 2 shows the interatomic distances and the mag-
netic moments of the Fe6 chain: Figures 2a–2e for the
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Fig. 2. Interatomic distance and magnetic moment of Fe6 chain.

fixed chain-lengths, L = 9.92−11.94 Å, and Figure 2f for
the optimized chain-length.

The optimized structure is composed of three dimers
whose interatomic distances are almost the same. The in-
teratomic distance of the dimer change from 1.93 to 2.13 Å
with increasing the chain-length, while the distance be-
tween the dimers changes from 2.07 to 3.04 Å. The ratio
of these distances changes from 0.93 to 0.69. Therefore,
the dimerization is stronger in the Fe6 than in the Fe5

(0.95 ∼ 0.88). This is due to the fact that the existence of
a monomer weakens the dimerization in the Fe5.

The magnetic moments within each dimer align par-
allel for all the chain-lengths, and so the magnetic mo-
ment behaves in a unit of dimer. The magnetic moments
of the dimers align antiparallel for L � 11.16 (includ-
ing the optimized chain-length, 10.83 Å) as shown in Fig-
ures 2a–2c and 2f. The magnetic moments of the dimer on
each side rotate oppositely (but coplanarly) with increas-
ing the chain-length; the angle between the central and
side dimers is about 80◦ for L = 11.79 Å in Figure 2d,
and 60◦ for L = 12.41 Å in Figure 2e. They will align
parallel when the interdimer distance is widened more.

The size-dependence of magnetic arrangement of the
Fe6 in Figure 2 seems to be different from that of the Fe5

in Figure 1. However, both the magnetic arrangement can
be explained qualitatively by a J1-J2 Heisenberg model
with the dimerization as described in the next section.

4 J1-J2 Heisenberg model

In this section, the magnetic arrangement of the Fe5 and
Fe6 chains are discussed by a J1-J2 Heisenberg model.
Figure 3 shows schematic diagrams of the model, Fig-
ure 3a for Fe5 and Figure 3b for Fe6. Here, J1 indicates
an effective ferromagnetic interaction within a dimer, J ′

1

a ferromagnetic interaction outside a dimer, J2 and J ′
2

antiferromagnetic interactions between the second neigh-
bors. Assuming the coplanar arrangement, the interaction
Hamiltonians, H ′

5 for Fe5 and H ′
6 for Fe6, are expressed

Fig. 3. J1-J2 Heisenberg dimer model: (a) for Fe5 and (b) for
Fe6.

as follows:

H ′
5 = −2J1 cos(θ2 − θ′2) − 2J ′

1 cos θ2
+ 2J2 cos θ′2 + J ′

2 cos 2θ2 (3)

H ′
6 = −J1 {cos 2θ1 + 2 cos(θ2 − θ′2)} − 2J ′

1 cos(θ1 − θ2)

+ 2J2 {cos(θ1 + θ2) + cos(θ1 − θ′2)} , (4)

where θ1 is the angle of the magnetic moment of the two
atoms around the center of the Fe6, θ′2 and θ2 are those of
the end and the next atoms, respectively. The magnetic
arrangement can be decided by minimizing equations (3)
or (4) with a certain set of parameters, Js.

Figure 4 shows θ2(degree) at the minimum of H ′ as
the function of J ′

1/J1 and J2/J1: Figure 4a for Fe5 with
J ′

2/J2 = J ′
1/J1 and Figure 4b for Fe6. The horizontal axis,

J ′
1/J1, means the degree of dimerization; no dimerization

occurs when J ′
1/J1 = 1, and dimers are completely sepa-

rated when J ′
1/J1 = 0. The vertical axis, J2/J1, indicates

the degree of the antiferromagnetic interaction between
the second neighbors.

In the black area at the bottom, where θ2 = 0, all
the magnetic moments are parallel as shown in Figure 1e
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Fig. 4. Angle of the magnetic moment θ2 at the minimum of
H ′: (a) for Fe5 and (b) for Fe6.

although the other angles, θ1 and θ′2, are not shown. In the
gray area at the left-hand side, where θ2 = 180, the mag-
netic moment of each dimer aligns antiparallel as shown
in Figure 2a. The magnetic arrangement is non-collinear
in the other area where 0 < θ2 < 180. It is noted that no
antiferromagnetic alignment occurs in the region where
J ′

1/J1 ≈ 1 (in the region where the dimerization is weak).
This agrees with the preliminary results for the chain with
an equal interatomic distance [7].

For the Fe5 chain in Figure 4a, the area of the
antiparallel alignment is small and the area of the par-
allel alignment is predominant. (This tendency is more
obvious when J ′

2 = J2.) By contrast, the antiparallel area
is significant for the Fe6 chain in Figure 4b. Moreover,
the non-collinear area is smaller in Figure 4b than in Fig-
ure 4a. Because no interaction exists between the second
nearest dimers across a dimer in the present J1-J2 model,
it is easy for the Fe6 to realize the antiparallel alignment of
dimer (the parallel alignment between the second nearest

dimers) as in Figure 2f. On the other hand, the antiferro-
magnetic interaction, J ′

2, exists between two dimers across
a monomer, so it is difficult for the dimers in the Fe5 to
align parallel, but easy to tilt each other as in Figure 1f.
The simulation by the J1-J2 model qualitatively agrees
with the results obtained by the first principle molecular
dynamics, where no antiparallel alignment appears for the
Fe5 in Figure 1 and that is predominant for the Fe6 in Fig-
ure 2 although the actual parameters, Js, are not clearly
determined by the model.

5 Conclusion

Atomic structures and non-collinear magnetic moments
are calculated by means of the first principle molecular
dynamics for the Fe5 and Fe6 linear chains. The calcu-
lation shows that the optimized atomic structures have
the dimerization and the magnetic arrangement also has
a unit of dimer, especially for the Fe6. However, the exis-
tence of a monomer weakens the dimerization and brings
the gradually tilt magnetic arrangement for the Fe5. It is
expected that the existence of a monomer has a great ef-
fect on the magnetic arrangement not only for the Fe5 but
also for longer chains. That is, the magnetic arrangement
of the Fe chain depends on whether the number of atoms
is even or odd.
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